基于偏振自适应融合图像的水下物证探测方法

Underwater Evidence Detection Method Based on Polarization Fusion Image

  • 摘要: 偏振探测技术能够在复杂的背景环境中凸显出目标,为我们提供了更为清晰和精准的目标识别能力。然而,在法庭科学领域上,利用偏振成像技术对水下物证进行探测搜寻的研究仍属空白。针对这一问题,本文通过偏振成像装置,对目标强度图像和偏振度图像进行融合。利用非下采样剪切波(non-subsampled shearlet transform, NSST)对图像进行分解后,在高频子带提出了参数自适应的简化型脉冲耦合神经网络模型,在低频子带则采用一种基于区域能量的自适应加权融合规则。在可见光下,对3类典型目标进行相关算法比对实验。实验结果表明,通过偏振成像技术可有效探测到水下物证,利用本文提出的图像融合算法有效突出了水下物证的细节特征,验证了偏振探测技术对水下物证成像的有效性,有利于突破当下法庭科学领域水下物证探测技术的空白。

     

    Abstract: Polarization detection technology can highlight targets in complex background environments, providing us with clearer and more accurate target recognition. However, research on the use of polarization imaging in courtroom science, regarding the detection and search for underwater evidence, is lacking. To address this issue, this study fuses the polarization and target intensity images using a polarization imaging device. After decomposing the images using non-subsampled shear waves (NSST) into low and high-frequency sub-bands, a simplified impulse-coupled neural network model with adaptive parameters is proposed for the high-frequency sub-band, and an adaptive weighting fusion rule, based on region energy, is used for the low-frequency sub-band. Correlation algorithm comparison experiments were conducted for three typical targets at visible wavelengths. The experimental results show that underwater evidence can be effectively detected using polarization imaging technology. The image fusion algorithm proposed in this paper effectively highlights the detailed features of underwater evidence, verifying the effectiveness of polarization detection technology for underwater evidence imaging, which is conducive to breaking through the existing research gap in the field of courtroom science.

     

/

返回文章
返回