弹载红外探测器对拦截弹的探测能力分析

Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor

  • 摘要: 在弹载平台上加装红外探测器,从而对拦截弹进行探测和预警,是提高弹载平台突防和生存能力的创新性手段。本文针对弹载红外探测器对拦截弹的探测能力,分析了拦截弹的红外辐射特性,并推测了用于探测拦截弹的红外探测器参数。同时,根据探测概率和输入信噪比的关系以及基于辐射差的信噪比模型推导了探测概率模型。在此基础上,分析了对末段、中段防御拦截弹的探测需求,从探测概率、作用距离两个方面对弹载红外探测器的探测能力进行了分析。分析结果表明:弹载红外探测器对末段拦截弹具有较强的探测能力,对于中段拦截弹只有在日照区能够保证探测需求,而在日影区只在一定探测视角下具备探测能力。

     

    Abstract: The addition of infrared detectors on a ballistic platform, thus detecting and warning the interceptor, is an innovative method to improve the surprise defense and survival capability of the ballistic platform. In this study, the infrared radiation characteristics of the interceptor are analyzed and the parameters of the infrared detector used to detect the interceptor are speculated with respect to the detection capability of the ballistic infrared detector. A detection probability model is derived based on the relationship between the detection probability and input signal-to-noise ratio and a signal-to-noise ratio model is derived based on the radiation difference. Therefore, the detection requirements of the late and mid-range defense interceptors are analyzed, and the detection capability of the bullet-borne infrared detector is analyzed in terms of the detection probability and action distance. The results of the analysis show that the ballistic infrared detector has a strong detection capability for the late stage interceptor; it can guarantee detection in the sunlight area for the middle stage interceptor, whereas only a certain detection angle has detection capability in the sun-shadow area.

     

/

返回文章
返回