机载小型化中波红外连续变焦光学系统设计

吴海清, 王玮超

吴海清, 王玮超. 机载小型化中波红外连续变焦光学系统设计[J]. 红外技术, 2021, 43(12): 1177-1182.
引用本文: 吴海清, 王玮超. 机载小型化中波红外连续变焦光学系统设计[J]. 红外技术, 2021, 43(12): 1177-1182.
WU Haiqing, WANG Weichao. Design of Airborne Miniaturized Middle Wavelength Infrared Continuous Zoom Optical System[J]. Infrared Technology , 2021, 43(12): 1177-1182.
Citation: WU Haiqing, WANG Weichao. Design of Airborne Miniaturized Middle Wavelength Infrared Continuous Zoom Optical System[J]. Infrared Technology , 2021, 43(12): 1177-1182.

机载小型化中波红外连续变焦光学系统设计

详细信息
    作者简介:

    吴海清(1982-),男,陕西榆林人,高级工程师,硕士,主要研究方向为成像光学系统设计。E-mail: whqcust@163.com

  • 中图分类号: O439; TH74

Design of Airborne Miniaturized Middle Wavelength Infrared Continuous Zoom Optical System

  • 摘要: 为适应机载光电系统对红外热像仪光学系统小型化、轻量化的要求,采用前端无焦扩展倍镜与后端连续变焦光学系统组合的方式,实现了30~660 mm的22倍连续变焦光学系统。该系统的光学总长为244 mm,总长/最大焦距比为0.37,系统具有光学总长小、变倍比大的特点,适用于远距离目标探测的大型机载光电吊舱系统中。将前端无焦扩展倍镜去掉后,后端连续变焦光学系统可以实现15~330 mm的22倍连续变焦光学系统,该系统的光学总长为138 mm,总长/最大焦距比为0.42,可作为独立的连续变焦系统应用于近距离目标探测的中小型机载光电吊舱系统中。设计结果显示,该系统在两种状态下均成像良好,在探测器对应的特征频率33 1p/mm处,中心视场的MTF值均在0.3附近,接近衍射极限,0.7视场的MTF值均在0.2附近,边缘视场的MTF均在0.15附近,能够满足应用需求。
    Abstract: To satisfy the requirements of an airborne electro-optical system for miniaturized and lightweight optical system of an infrared thermograph, a 22× continuous zoom optical system of 30–660 mm was realized by combining front-end afocal extender and back-end continuous zoom optical system. The total optical length of the system was 244 mm, and the total length/maximum focal length ratio was 0.37. The system had a small optical length and large zoom ratio, which makes the system suitable for large airborne electro-optical pod systems for long-distance detection. Upon removing the front afocal extender, the back-end system could achieve a 22× continuous zoom optical system of 15 to 330 mm. The total optical length of the system was 138 mm, and the total length/maximum focal length ratio was 0.42. The system can be used as a continuous zoom optical system in small-and medium-sized airborne electro-optical pod systems for close-range target detection. The design results exhibit that the system can capture images effectively in both states: at the characteristic frequency of 33 lp/mm corresponding to the detector, all the MTF values of the central field view were approximately 0.3, close to the diffraction limit, all the MTF values of the 0.7 field view were approximately 0.2, and all the MTF values of the edge field view were approximately 0.15, which satisfies the application requirements.
  • 图  1   连续变焦光学系统组成

    Figure  1.   Continuous zoom optical system composition

    图  2   机械正组补偿连续变焦原理图

    Figure  2.   Schematic diagram of mechanically compensated zoom system

    图  3   焦距为15 mm时的光路图

    Figure  3.   Optical system layout at 15 mm

    图  4   焦距为330 mm时的光路图

    Figure  4.   Optical system layout at 330 mm

    图  5   带增倍镜焦距为30 mm时的光路图

    Figure  5.   Optical system layout with extender at 30 mm

    图  6   带增倍镜焦距为660 mm时的光路图

    Figure  6.   Optical system layout with extender at 660 mm

    图  7   焦距为15 mm时的MTF

    Figure  7.   MTF graph with focal length of 15 mm

    图  8   焦距为330 mm时的MTF

    Figure  8.   MTF graph with focal length of 330 mm

    图  9   带扩展倍镜焦距为30 mm时的MTF

    Figure  9.   MTF graph with focal length of 30 mm with extender

    图  10   带扩展倍镜焦距为660 mm时的MTF

    Figure  10.   MTF graph with focal length of 660 mm with extender

    图  11   焦距为15 mm时的点列图

    Figure  11.   Spot diagram when the focal length is 15 mm

    图  12   焦距为330 mm时的点列图

    Figure  12.   Spot diagram when the focal length is 330 mm

    图  13   带扩展倍镜焦距为30 mm时的点列图

    Figure  13.   Spot diagram when the focal length is 30 mm with extender

    图  14   带扩展倍镜焦距为660 mm时的点列图

    Figure  14.   Spot diagram when the focal length is 660 mm with extender

    图  15   光学系统变倍组、补偿组变焦运动曲线

    Figure  15.   Zoom curves of continuous zoom subsystem

    表  1   光学系统技术指标

    Table  1   Optical design parameters

    Parameter Value
    Detector size 640×512(cooled)
    Pixel size 15 μm
    Wavelength 3.7 to 4.8 μm
    F number 4
    Focal length 15 to 330 mm(without extender)
    30 to 660 mm(with extender)
    Total length 138 mm(without extender)
    244 mm (with extender)
    下载: 导出CSV
  • [1] 王岭雪, 蔡毅. 红外成像光学系统进展与展望[J]. 红外技术, 2019, 41(1): 1-10. http://hwjs.nvir.cn/article/id/hwjs201901001

    WANG Lingxue, CAI Yi. Recent progress and perspectives of infrared optical systems[J]. Infrared Technology, 2019, 41(1): 1-10. http://hwjs.nvir.cn/article/id/hwjs201901001

    [2] 吉书鹏. 机载光电载荷装备发展与关键技术[J]. 航空兵器, 2017(6): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201706001.htm

    JI Shupeng. Equipment development of airborne electro-optic payload and its key technologies[J]. Aero Weaponry, 2017(6): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201706001.htm

    [3] 黄俊, 张正勇, 田省民. 机载对地光电探测设备现状及发展趋势研究[J]. 红外技术, 2018, 40(5): 412-416.

    HUANG Jun, ZHANG Zhengyong, TIAN Shengmin. Current status and development trend of airborne air to ground electro-optical detection equipment[J]. Infrared Technology, 2018, 40(5): 412-416.

    [4] 王向军, 王敏. 适用于无人机小型吊舱的变焦控制系统设计[J]. 光电工程, 2013, 40(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201301025.htm

    WANG Xiangjuna, WANG Min. A zoom system design suitable for miniaturization of UAV pod[J]. Opto-Electronic Engineering, 2013, 40(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201301025.htm

    [5] 薛慧, 李常伟. 红外中波连续变焦光学系统的设计[J]. 红外与毫米波学报, 2012, 31(5): 421-424. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201205009.htm

    XUE Hui, LI Changwei. Optical design of infrared continuous-zoom lenses[J]. J. Infrared Millim. Wawes, 2012, 31(5): 421-424. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201205009.htm

    [6] 吴海清, 李同海, 赵新亮, 等. 大靶面中波红外连续变焦光学系统设计[J]. 红外, 2019, 40(1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201901002.htm

    WU Haiqing, LI Tonghai, ZHAO Xinliang, et al. Design of large imaging plane middle wave infrared continuous zoom optical system[J]. Infrared, 2019, 40(1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201901002.htm

    [7] 王之江. 实用光学技术手册[M]. 北京: 机械工业出版社, 2007: 429-430.

    WANG Zhijiang. Practical Optical Technology Manual[M]. Beijing: China Machine Press, 2007: 429-430.

  • 期刊类型引用(8)

    1. 贾俊青,武文丽,蔡文超,杨洋,梁帅. 基于PSO的电气设备绝缘故障诊断系统设计. 电子设计工程. 2024(01): 77-81 . 百度学术
    2. 冯现永. 基于小波分析的图书馆电子阅览设备故障检测方法. 自动化与仪器仪表. 2021(02): 46-49 . 百度学术
    3. 赵洪山,张则言,孟航,张峻豪. 基于高压绝缘套管纹理特征的红外目标检测. 红外技术. 2021(03): 258-265 . 本站查看
    4. 蒋国清,万烂军. 基于最恰对比度显著性分析的红外弱小目标检测方法. 红外与激光工程. 2021(04): 265-272 . 百度学术
    5. 红外与激光工程. 红外与激光工程. 2021(04): 273 . 百度学术
    6. 张晓华,蔡巍,武宇平,吕志瑞,卢毅,孙云生,马鑫晟. 基于红外检测的变电站设备热状态诊断. 智慧电力. 2021(09): 109-116 . 百度学术
    7. 徐亚杰,王海星. 基于新特征算子的复杂背景红外弱目标检测算法. 国外电子测量技术. 2021(12): 7-11 . 百度学术
    8. 明勇,甘晓敏,杨帆. 基于时空域及高阶矩的红外弱目标检测算法. 国外电子测量技术. 2021(12): 1-6 . 百度学术

    其他类型引用(2)

图(15)  /  表(1)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  58
  • PDF下载量:  139
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-11-24
  • 刊出日期:  2021-12-19

目录

    /

    返回文章
    返回