基于双阶颜色信息的色域映射图像无参考质量评价算法

No-reference Quality Evaluation Algorithm for Color Gamut Mapped Images Based on Double-Order Color Information

  • 摘要: 色域映射是用于在不同设备之间实现彩色图像高保真传输的一种技术。但通过色域映射得到的图像不可避免因颜色信息的损失产生严重的伪影和失真,从而导致纹理结构失真和色彩自然度失真。基于颜色信息损失严重的事实,本文提出了一种基于双阶颜色表示的无参考质量评价方法。传统图像质量评价方法大多基于灰度域提取质量感知特征,少数考虑颜色信息的方法也仅从色调、饱和度等颜色分量中提取特征。色调、饱和度均是通过R、G、B三个颜色分量线性计算而得,忽略了颜色的导数信息。因此本文算法从零阶颜色信息(R、G、B颜色分量)和一阶颜色信息(即导数信息)中进行特征提取,并将所提特征进行回归训练得到质量预测模型。实验证明,该模型对色域映射图像质量的预测性能优于现有的无参考质量评价方法。

     

    Abstract: Gamut mapping is a technology used to achieve high-fidelity transmission of color images between different devices. However, an image obtained through gamut mapping inevitably produces serious artifacts and distortions because of color information loss, which leads to distortions in texture and color naturalness. Since color information loss is serious in gamut mapped images (GMIs), a no-reference quality evaluation method based on double-order color representation is proposed. Many traditional image quality assessment (IQA) methods extract quality-aware features (QAFs) in the gray domain, and a few IQA methods extract QAFs from color components, such as hue and saturation. Hue and saturation were calculated linearly using the R, G, and B color components while ignoring the derivative information of the color. Therefore, this study extracted features from zero-order (R, G, and B components) and first-order (derivative) color information. These features were then used for regression training to obtain a quality prediction model. Experimental results show that the model is superior to existing no-reference quality evaluation methods in predicting the quality of GMIs.

     

/

返回文章
返回