基于多尺度特征点提取的可见光与红外图像匹配方法

Visible and Infrared Image Matching Method Based on Multi-Scale Feature Point Extraction

  • 摘要: 针对可见光与红外图像匹配任务因图像特征差异较大导致的匹配精度低、适用性较差等问题,本文提出一种基于多尺度特征点提取的可见光与红外图像匹配方法(Visible and Infrared Image Matching-Net, VIMN)。首先,为增强VIMN匹配网络适应图像几何变换的能力,在特征提取模块中引入可变卷积层(Deformable Convolution),同时,通过金字塔池化层(Spatial Pyramid Pooling,SPP)完成多尺度特征融合以顾及图像的底层与高层语义信息;其次,在多尺度融合特征图上构建了联合特征空间与通道的响应分数图以提取鲁棒的特征点;最后,由图像块匹配模块采用度量学习的方式完成可见光与红外图像匹配工作。为验证VIMN匹配方法的优越性,与SIFT、PSO-SIFT、D2-Net以及CMM-Net在匹配实验数据集上进行对比实验。定性与定量结果表明,本文所提VIMN匹配网络具有更为优异的匹配性能。

     

    Abstract: A visible and infrared image matching method (VIMN) based on multiscale feature point extraction is proposed to address the issues of low matching accuracy and poor applicability, caused by significant differences in image features in visible and infrared image matching tasks. First, to enhance the ability of the VIMN to adapt to geometric image transformations, a deformable convolution layer is introduced into the feature extraction module. A spatial pyramid pooling (SPP) layer is used to complete multiscale feature fusion, considering both low- and high-level semantic information of an image. Second, a joint feature space and channel response score map are constructed on the multiscale fusion feature map to extract robust feature points. Finally, an image patch matching module uses metric learning for visible light and infrared image matching. To verify the superiority of the VIMN matching method, comparative experiments were conducted on matching experimental datasets using scale-invariant feature transform (SIFT), particle swarm optimization (PSO)-SIFT, dual disentanglement network (D2 Net), and contextual multiscale multilevel network (CMM-Net). The qualitative and quantitative results indicate that the VIMN proposed in this study has better matching performance.

     

/

返回文章
返回