轻量级目标检测算法综述

Review of Lightweight Target Detection Algorithms

  • 摘要: 传统基于深度学习的目标检测算法通常需要巨大的计算资源和长时间的训练,不能满足工业界的需求。轻量级目标检测网络通过牺牲一部分检测精度,换取更快的推理速度和更轻量的模型,适用于边缘计算设备中的应用,受到了广泛关注。本文介绍了常用于压缩和加速模型轻量化技术,归类分析了轻量化骨干网络结构原理,并在YOLOv5s上进行实际效果对比。最后对轻量化目标检测算法的未来前景以及面临的挑战进行了展望。

     

    Abstract: Traditional target detection algorithms based on deep learning usually require extensive computing resources and long-term training, which do not meet the needs of the industry. Lightweight target detection networks sacrifice part of the detection accuracy in exchange for faster inference speed and lighter models. They are suitable for applications in edge-computing devices and have received widespread attention. This study introduces lightweight technologies commonly used to compress and accelerate models, classifies and analyzes the structural principles of lightweight backbone networks, and evaluates their practical impact on YOLOv5s. Finally, the prospects and challenges of lightweight target-detection algorithms are discussed.

     

/

返回文章
返回