A Stable Interactive Registration Algorithm-based Infrared and Visible Light Image Registration Method for Unexploded Ordnance Targets
-
Graphical Abstract
-
Abstract
A stable interactive registration algorithm (SIRA) based on the Imregtform algorithm is proposed to address issues such as complex image backgrounds, low mutual information, and few effective feature points, leading to registration difficulties in the detection of unexploded ordnance (UXO) using infrared and visible-light imaging techniques. First, the Cpselect algorithm is incorporated to realize the accurate alignment of the key nodes of an image, which are aggregated by arithmetic averaging as the initial matrix. The contrast-limited adaptive histogram equalization (CLAHE) algorithm is incorporated to adaptively segment and equalize the image and avoid contrast over-enhancement, combined with bilinear interpolation to ensure smooth continuity between the regions and a stable iterative alignment process. Matrix Frobenius proximity (MFP) was introduced as an alignment evaluation index to alleviate the volatility of traditional evaluation indices. Experimental results show that SIRA enhanced the alignment efficiency by approximately 4.72× and MFP by 15.47× compared to the Imregtform algorithm. The algorithm exhibited high accuracy and stability for UXO image alignment.
-
-