Study on Dither-caused Clutter for Staring Infrared Camera in Geostationary Orbit
-
-
Abstract
For a staring infrared camera in geostationary orbit, the dither-caused clutter results from the combined effects of background features, camera parameters, camera line-of-sight dither characteristics, and background suppression algorithms. To quantitatively evaluate the intensity of dither-caused clutter, several time-related factors, such as the dither spectrum, detector integration time, frame period, and interframe differential background suppression algorithm are considered. They are combined into a background-independent dither-equivalent angle, and the model of dither-caused clutter is established by multiplying the dither-equivalent angle and gradient statistics of the background radiation intensity. Based on ground measurement experiments on the camera line-of-sight dither characteristics, the spectrum of the camera line-of-sight dither caused by the cryocooler and momentum wheels are analyzed. The dither-caused clutter is also simulated and calculated to verify the theoretical model. The results show that the relative deviation between the calculated and simulated results was less than 15%. This indicates the high versatility and efficiency of the of model, which is suitable for the iterative optimization of camera design.
-
-